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A B S T R A C T

The first episode of psychosis is typically preceded by a prodromal phase with subthreshold symptoms and
functional decline. Improved outcome prediction in this stage is needed to allow targeted early intervention. This
study assesses a combined clinical and resting-state fMRI prediction model in 137 adolescents and young adults
at Clinical High Risk (CHR) for psychosis from the Shanghai At Risk for Psychosis (SHARP) program. Based on
outcome at one-year follow-up, participants were separated into three outcome categories including good out-
come (symptom remission, N = 71), intermediate outcome (ongoing CHR symptoms, N = 30), and poor out-
come (conversion to psychosis or treatment-refractory, N = 36). Validated clinical predictors from the psy-
chosis-risk calculator were combined with measures of resting-state functional connectivity. Using multinomial
logistic regression analysis and leave-one-out cross-validation, a clinical-only prediction model did not achieve a
significant level of outcome prediction (F1 = 0.32, p = .154). An imaging-only model yielded a significant
prediction model (F1 = 0.41, p= .016), but a combined model including both clinical and connectivity mea-
sures showed the best performance (F1=0.46, p < .001). Influential predictors in this model included func-
tional decline, verbal learning performance, a family history of psychosis, default-mode and frontoparietal
within-network connectivity, and between-network connectivity among language, salience, dorsal attention,
sensorimotor, and cerebellar networks. These findings suggest that brain changes reflected by alterations in
functional connectivity may be useful for outcome prediction in the prodromal stage.

1. Introduction

In the months to years preceding the first psychotic episode, the
large majority (i.e., 80–90%) of individuals who are later diagnosed
with schizophrenia or a related psychotic disorder experience a

prodromal phase characterized by attenuated or transient psychotic
symptoms, cognitive and social difficulties, and functional decline (e.g.
(Cannon, 2015; Yung and McGorry, 1996)). Research efforts in schi-
zophrenia, and psychosis more broadly, focus increasingly on this early
phase of psychotic illness development. These studies aim to
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understand what happens on the neural, cognitive, and functional level
as psychosis first develops and, ultimately, to design methods for early
intervention.

Intervening early in the disease course, before recurrent or persis-
tent psychosis and functional impairment have developed, may im-
prove clinical outcomes in those at risk for psychosis. Moreover, early
intervention may support social and cognitive development of youth
prone to psychosis and thereby mitigate the illness’ impact on their
overall functioning. Early identification of those at risk of developing
psychosis is crucial to early intervention. Clinical interviews designed
to detect individuals at Clinical High Risk (CHR) for psychosis have
shown excellent prognostic accuracies comparable to other tests in
preventative medicine (Fusar-Poli et al., 2015; Riecher-Rössler and
Studerus, 2017). However, their effectiveness is mediated mainly by
their ability to rule out psychosis (Fusar-Poli et al., 2015), i.e. to cor-
rectly identify those who are not at risk rather than differentiating
among at-risk individuals in terms of outcome. Given these drawbacks
and the limitations of current psychosis treatments, there is a need for
improved outcome prediction in high-risk youth.

With the goal of improving outcome prediction for individual CHR
subjects, Cannon and others developed a psychosis-risk calculator that
uses clinical and neurocognitive data to compute a more precise
probability of conversion to psychosis (Cannon et al., 2016). This risk-
calculator was designed with data from the American NAPLS-2 cohort,
but has been extensively validated with data from independent cohorts
from the US (Carrión et al., 2016), UK (Fusar-poli et al., 2019), and
China (Zhang et al., 2018). Moreover, studies suggest that further im-
provements in outcome prediction in high-risk cohorts may be achieved
through the use of neurocognitive, neuroimaging, or neurophysiolo-
gical data, on their own or in addition to clinical data (Bodatsch et al.,
2011; Cannon et al., 2016; de Wit et al., 2017; Kambeitz-
Ilankovic et al., 2016; Koutsouleris et al., 2015; Nieman et al., 2014).

The current study aims to assess if fMRI-derived measures of func-
tional connectivity improve outcome prediction in the CHR stage. Long-
standing theories posit that psychosis may result from a failure of
functional integration in the brain (Collin et al., 2016; Friston et al.,
2016; Stephan et al., 2009) and fMRI studies have shown abnormalities
in task-related activation and functional connectivity of brain regions in
individuals at high-risk for psychosis (Cao et al., 2016; Sabb et al.,
2010; Thermenos et al., 2013; Yoon et al., 2015). These alterations
may, in part, result from a shared underlying abnormality in the brain's
functional organization (Cole et al., 2014), which may be evaluated
using resting-state fMRI. Indeed, recent findings suggest that measures
of functional connectivity and brain network organization derived from
resting-state fMRI may be predictive of conversion to psychosis

(Cao et al., 2018; Collin et al., 2018). We hypothesized that adding
measures of functional connectivity and network organization to es-
tablished clinical and neurocognitive predictors of psychosis may im-
prove outcome prediction in the CHR stage above and beyond clini-
cally-based prediction alone. If functional connectivity measures are
found to improve outcome prediction, this would suggest that these
measures have potential clinical value and may in the future be used to
improve outcome prediction for individual patients.

2. Material and methods

2.1. Subjects

This study involved a total of 137 Clinical High Risk (CHR) subjects.
These subjects were recruited as part of the Shanghai At-Risk for
Psychosis (SHARP) program, an international research effort conducted
by the Shanghai Mental Health Center (SMHC) in collaboration with
the Beth Israel Deaconess Medical Center (BIDMC) and neuroimaging
and other data processing laboratories at Brigham and Women's
Hospital, Massachusetts General Hospital, Harvard University and the
Massachusetts Institute of Technology. The study was approved by the
Institutional Review Boards of BIDMC and the SHMC. All subjects or
their legal guardians provided written informed consent, and minor
subjects provided assent.

The current study involves a subgroup of a sample reported on
previously (Collin et al., 2018). The current subgroup comprises only
those individuals for whom good-quality imaging data were available,
as well as sufficient follow-up data to determine outcome and complete
clinical and neurocognitive data as required for the prediction model
(details below).

2.2. Clinical evaluation

2.2.1. Baseline clinical and cognitive assessments
Prodromal symptoms were assessed using a validated Chinese ver-

sion of the Structured Interview for Prodromal Symptoms (SIPS)
(Zheng et al., 2012). Neurocognitive functioning was assessed using the
MATRICS Consensus Cognitive Battery (Kern et al., 2008;
Nuechterlein et al., 2008), including the Brief Assessment of Cognition
in Schizophrenia (BACS) (Keefe et al., 2004) and Hopkins Verbal
Learning Test-Revised (HVLT-R) (Benedict et al., 1998). Overall func-
tioning was assessed using the Global Assessment of Functioning (GAF)
(Jones et al., 1995). Table 1 summarizes demographic, clinical, and
cognitive variables.

Table 1
Clinical and cognitive predictor variables. Group-averaged values of clinical and cognitive variables from the psychosis-risk calculator that entered into the prediction
model. SIPS P1 and P2 scores are shown separately here to allow easy interpretation, but a combined value was used in the prediction analysis by rescaling each score
down to a maximum of 3 (using 0 for values of 0–2) and adding the scores together. Statistical comparison was performed using analysis of variance for continuous
and chi-squared tests for categorical variables.

Good outcome (N = 71) Intermediate outcome (N = 30) Poor outcome (N = 36) Statistics

Age in years, mean (sd) 18.6 (4.9) 19.3 (5.3) 18.6 (4.8) F(2134)=0.28
[range] [13 to 32] [14 to 32] [14 to 34] p= .76
Positive family history, N (%) 6 (9%) 3 (10%) 5 (14%) χ2 = 0.77

p= .68
GAF change in percentage, mean −29.7 (11.6) −28.3 (6.2) −33.5 (8.5) F(2134)=2.71
(sd) [range] [−73 to −7] [−43 to −20] [−47 to −4] p= .07
SIPS P1 score, mean (sd) 3.3 (1.8) 3.2 (1.7) 3.7 (1.8) F(2134)=0.88
[range] [0 to 6] [0 to 6] [0 to 6] p= .42
SIPS P2 score, mean (sd) 3.3 (1.7) 3.6 (1.7) 3.4 (1.7) F(2134)=0.19
[range] [0 to 6] [0 to 6] [0 to 6] p= .83
HVLT-R score, mean (sd) 23.4 (5.7) 23.2 (5.4) 20.5 (4.7) F(2134)=3.6
[range] [9 to 33] [11 to 33] [11 to 29] p= .03
BACS-SC score, mean (sd) 59.8 (8.7) 56.5 (11.1) 55.3 (10.0) F(2134)=2.9
[range] [42 to 75] [18 to 75] [28 to 73] p= .05
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2.2.2. Clinical predictor selection
As clinical predictors, we selected variables included in the psy-

chosis-risk calculator developed for the CHR stage (Cannon et al., 2016)
and validated in the SHARP study (Zhang et al., 2018). Following
Zhang et al. (2018), we used 6 out of the original 8 risk factors in the
calculator, including age at baseline, BACS symbol coding raw scores,
HVLT-R raw scores, unusual thought content and suspiciousness
(quantified as the sum of rescaled SIPS items P1 and P2), change in
global functioning (measured as the change in current GAF relative to
the preceding year), and having a first-degree family member with
psychosis (yes/no). For details on clinical predictors and validation in
our sample see Zhang et al. (2018).

2.3. Neuroimaging

2.3.1. Image acquisition
Magnetic Resonance Imaging (MRI) scans were acquired on a 3T

Siemens MR B17 (Verio) system, 32-channel head coil at the SMHC and
included a resting-state functional MRI (rs-fMRI) scan (149 functional
volumes; TR= 2500 ms, TE=30 ms, FA=90°, FOV=224 mm, voxel
size 3.5 × 3.5 × 3.5 mm3, 37 contiguous axial slices, duration 6′19″)
and an anatomical T1-weighted MRI scan (MP-RAGE; TR=2300 ms,
TE= 2.96 ms, FA=9°, FOV=256 mm, voxel size 1 × 1 × 1 mm3,
192 contiguous sagittal slices, duration 9′14″).

2.3.2. Image preprocessing
Image preprocessing was performed using Conn (v17d) software

(Whitfield-Gabrieli and Nieto-Castanon, 2012) and included segmen-
tation of gray and white matter tissue, realignment, slice-timing cor-
rection, normalization to Montreal Neurological Institute (MNI) space,
and smoothing (6 mm FWHM Gaussian filter). Potential spurious cor-
relations in rs-fMRI time-series were assessed using the Artifact Detec-
tion Tool (ART; http://www.nitrc.org/projects/artifact_detect). Out-
liers were defined as volumes showing head displacement in the x, y, or
z direction greater than 1 mm relative to the previous frame or a mean
global intensity greater than 3 standard deviations from the mean in-
tensity for the entire rs-fMRI scan. These outlier scans were removed
from the data through linear regression. Time-series were corrected for
motion (captured by 3 rotational, 3 translational, and 1 composite
motion parameter), artefactual covariates, and signals within white
matter (i.e., 3 principle component analysis (PCA) parameters) and
cerebrospinal fluid (3 PCA parameters) masks through linear regres-
sion. Resulting time-series were band-pass filtered (0.008 Hz–0.09 Hz).

2.3.3. Imaging predictor selection
From our previous study on functional connectome organization in

CHR (Collin et al., 2018), we selected Rand similarity coefficients (SR)
for each subject in the current study. Here, SR values (between 0 and 1)
reflect how typical or atypical the modular organization of a subject's
connectome organization is relative to an average healthy network,
with lower values reflecting a more atypical modular organization. For
the current study, the SR measure obtained using the Harvard-Oxford
atlas included in the default Conn processing pipeline was used (for
details see Collin et al., 2018). In addition to this measure of overall
connectome organization, we included measures of functional con-
nectivity (i.e., average Fisher-transformed correlation coefficients)
within and between 8 established rs-networks, including default-mode
(DMN), salience (SAL), language (LAN), dorsal attention (DA), fronto-
parietal (FP), sensorimotor (SM), visual (VIS), and cerebellar (CER)
networks. These 8 rs-networks are part of Conn's default processing
pipeline, as obtained from ICA analysis of 497 subjects from the Human
Connectome Project (https://www.nitrc.org/projects/conn/). Figure S1
illustrates all included connectome and connectivity measures per
group (supplementary materials).

2.4. Outcome assessment

Subjects were reassessed at one-year follow-up. As the CHR stage
has a large heterogeneity in clinical outcome ranging from psychotic
conversion to symptom remission (Cannon, 2015), we differentiated
multiple outcome levels: (1) good outcome or symptom remission, i.e.
no longer meeting CHR criteria at follow-up (N = 71); (2) intermediate
outcome, i.e. still meeting CHR criteria at follow-up (N = 30), and (3)
poor outcome (N = 36), including CHR converters and ‘treatment-re-
fractory’ CHR individuals, the latter being characterized by worsened
symptoms despite antipsychotic treatment but without meeting formal
criteria for psychosis.

2.5. Prediction analysis

2.5.1. Logistic regression analysis and leave-one-out cross-validation
The multinomial logistic regression analysis was performed in three

steps. First, the logistic regression model was run using only clinical
predictors. Second, an imaging-only prediction model that included
measures of connectome organization and within/between-network
functional connectivity was assessed. Third, the clinical and fMRI
measures were combined in one prediction model. Prior to the logistic
regression analysis, a PCA analysis was performed to reduce the di-
mensionality of the predictor data (i.e. up to 43 predictor variables in
the combined model). As the resulting PCA components are linearly
uncorrelated, this step also averted potential collinearity between
variables. A component threshold of 13 was chosen to reach a 10:1
subjects-by-predictor ratio (Harrell et al., 1996; Peduzzi et al., 1996).
Next, leave-one-out cross-validation was performed by fitting all par-
ticipants except one and predicting out-of-sample outcomes. This was
done in an iterative fashion for each participant to build cross-validated
predictions. The out-of-sample predictions resulting from the cross-va-
lidation were used to estimate measures of model performance.

2.5.2. Assessing model performance
Three measures of model performance were assessed. First, positive

predictive values (PPV) were computed for each group as the prob-
ability that participants with a predicted outcome label indeed had that
outcome. A weighted average PPV was computed as a measure of
overall model performance, reflecting the average probability across
groups that an outcome label predicted by the model was in fact ac-
curate. Note that as we evaluated three outcome categories with
varying prevalence, the chance-level average PPV is approximately
37% here. Second, the sensitivity (or true positive rate) was computed
as the proportion of each outcome category that was correctly predicted
as such. From these, the model F1-measure (harmonic mean of the
positive predictive value and sensitivity, separately for each outcome
category) was used to characterize overall model performance. This
measure was compared to expected chance levels using a permutation
test with 1000 sampled permutations in order to evaluate the statistical
significance of the model's prediction. In addition, to perform a statis-
tical comparison of the three models in terms of performance, a re-
sampling with replacement analysis was used to compute the expected
distribution of accuracy values for each model. These were compared
across models yielding p-values reflecting the difference in prediction
performance for each pairwise comparison.

2.5.3. Identifying predictor variables driving outcome prediction
A secondary analysis was performed to explore which variables

added most predictive information to the combined model. To this end,
prediction coefficients were computed for each predictor variable by
multiplying the regressor coefficients of the PCA components with the
corresponding component loadings. The directionality of these coeffi-
cients is such that positive values indicate that increases in the predictor
variable predict better outcome (i.e. a relative increase in the likelihood
of symptom remission) and negative values imply that increases in the
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predictor variable predict worse outcome (i.e. an increased likelihood
of poor outcome including conversion to psychosis). Associated stan-
dard error and p-values were computed to identify predictors with high
influence (details in supplementary materials). Note that this is not a
proper confirmatory test, but rather a way to compare the relative in-
fluence of predictors and highlight those with the greatest influence.

2.5.4. Validation analyses
As the PCA component threshold of 13 components (chosen to limit

the subjects-by-predictor ratio to 10:1) is arbitrary, we performed a
validation analysis in which the combined prediction model was rerun
for a range of PCA component thresholds from 10 to 15 components.

Motion parameters (i.e., composite motion parameter and the
number of removed outlier scans) were compared between groups, and
included in the combined prediction model to assess the possible in-
fluence of head motion on our results.

Moreover, to test for possible systematic group-differences in other
factors that may contribute to differential patterns of functional con-
nectivity, outcome groups were compared on their scores on SIPS item
D4 (trouble with focus and attention) and G4 (tolerance to normal
stress), as measures of attention and anxiety/stress-levels.

3. Results

Fig. 1 illustrates the performance of each of the three models in the
logistic regression analysis, i.e. clinical-only, imaging-only, and com-
bined model. In addition, the confusion matrix obtained for each pre-
diction model is provided in the supplementary materials.

3.1. Clinical-only prediction model

Using only clinical and cognitive predictors, the model was unable
to predict the three outcome categories to a significant degree
(F1= 0.32, F1-chance= 0.26 ± 0.06, p= .154).

3.2. Imaging-only prediction model

Using only rs-fMRI derived measures of connectome organization
and within/between-network functional connectivity yielded a sig-
nificant prediction model (F1= 0.41, F1-chance= 0.29 ± 0.06,
p= .016). Positive predictive values were 60% for good, 24% for in-
termediate, and 39% for poor outcome (weighted average PPV of 47%),

with sensitivities of 52%, 30%, and 42% respectively. The imaging-only
model showed a trend-level improvement in prediction performance
relative to the clinical-only model (p= .06).

3.3. Combined prediction model

Combining clinical and imaging measures improved the perfor-
mance of the prediction model (F1= 0.46, F1-chance= 0.29 ± 0.06,
p < .001). The combined model yielded positive predictive values of
63% for good, 24% for intermediate, and 51% for poor outcome, with
sensitivities of 52%, 30%, and 58% respectively. The weighted average
PPV was 51%, which is an improvement of 39% relative to chance-level
and 32% relative to the clinical-only model. In direct comparison, the
combined model significantly outperformed the clinical-only-model
(p= .02), but was not statistically better than the imaging-only model
(p= .16).

3.4. Identifying variables driving outcome prediction

Analyzing prediction coefficients for each variable in the combined
prediction model (Fig. 2) showed that GAF functional decline, verbal
learning performance (HVLT-R), and a family history of psychosis were
the most influential clinical variables. Greater functional decline and a
positive family history predicted worse outcome, while higher verbal
learning scores predicted better outcome at one-year follow-up. For
fMRI-derived measures, influential predictors included modular con-
nectome organization, DMN and FP within-network connectivity, and
between-network connectivity among LAN, DA, CER, SM, and SAL
networks. Higher within-network connectivity predicted worse out-
come, while higher between-network connectivity and more typical
modular connectome organization predicted better outcome. Beta- and
p-values for each predictor variable in each model are provided in the
supplementary materials.

3.5. Validation analyses

A validation analysis testing the combined model across a range of
PCA component thresholds confirmed the main results. Specifically,
each threshold yielded a significant level of outcome prediction and the
variables identified as the most influential predictors in the model were
largely stable across thresholds (supplementary materials, Fig. S2).

There were no significant group-differences in the composite motion

Fig. 1. Step-wise performance of prediction models. (A) Weighted average positive predictive value (PPV) across groups for each of the three models as a measure of
overall model performance, reflecting the average probability that an outcome label predicted by the model was in fact accurate (relative to 37% chance-level). Note
that the clinical-only model includes both clinical and cognitive predictors and that the imaging-only model includes both connectome and connectivity measures.
(B) changes in outcome prediction relative to the prevalence of each outcome category in the overall sample, illustrating that outcome prediction improved in a step-
wise fashion from the clinical-only to the combined model for good and poor outcome groups, with the steepest improvement in the poor outcome group.
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parameter (F2,134 = 0.88, p= .416) or the number of removed outlier
scans (F2,134 = 1.19, p= .307). Including these measures in the com-
bined prediction model did not change our main results (F1=0.46,
p= .01 and F1=0.43, p= .01 for motion parameter and number of
removed scans respectively).

Assessing other factors that could have contributed to differential
patterns of functional brain connectivity did not show significant
group-differences in focus/attention problems (F2,134 = 0.40, p= .673)
or tolerance to stress (F2,134 = 0.18, p= .836).

4. Discussion

The results of this study in a large sample of adolescents and young
adults at CHR for psychosis indicate that rs-fMRI data contain pre-
dictive information that may help to improve outcome prediction in the
prodromal stage beyond validated clinical and cognitive predictors of
psychosis alone. An imaging-only and combined (clinical/imaging)
prediction model were both found to yielde a significant level of out-
come prediction, while a clinical-only model was unable to predict
good, intermediate, or poor outcome to a significant degree. Relative to
the clinical-only model, the combined model showed a 32% improve-
ment in average PPV, reflecting the probability that a predicted out-
come label matched the actual outcome. These findings suggest two
main points. First, that brain abnormalities reflected by alterations in
functional connectivity precede and possibly drive subsequent changes
in clinical functioning. And second, that neuroimaging markers of
functional connectivity may be useful for improving early identification
and clinical decision-making in prodromal psychosis.

In our current study, baseline clinical and cognitive measures alone
were unable to predict outcome to a significant degree. The clinical and
cognitive predictors were taken from the NAPLS-2 psychosis risk cal-
culator (Cannon et al., 2016) that was previously validated by our
group in a larger cohort that included our current sample (Zhang et al.,
2018). We note that the sample size of this previous study was ap-
proximately 50% larger because our current sample was limited to
subjects for whom we had both complete clinical and imaging data.
Another important distinction between the previous investigation and
our current study is that the previous study distinguished CHR in-
dividuals who developed psychosis from those who did not convert to
psychosis, rather than predicting clinical outcome more broadly as in
our current study. As the risk-calculator from which the clinical

predictors were taken was developed for predicting psychosis specifi-
cally, these predictors may not be equally effective in predicting out-
come beyond conversion to psychosis.

Our findings show that fMRI-derived measures of functional con-
nectivity may be useful for improving outcome prediction in prodromal
psychosis. A number of previous studies support the hypothesis that
changes in functional brain connectivity are predictive of outcome in
at-risk individuals. In a study in CHR individuals from the NAPLS-2
study, hyperconnectivity in a cerebello-thalamo-cortical network pre-
dicted time to conversion to full psychosis (Cao et al., 2018). Moreover,
a study comparing high-risk subjects who subsequently converted to
psychosis to controls and nonconverters found increased midbrain-
prefrontal cortex functional connectivity in converters only (Allen et al.,
2012). Another study comparing converters and nonconverters showed
that reduced functional connectivity between the bilateral insula was
most pronounced in converters (Wang et al., 2016). Finally, a graph
theoretical analysis of functional connectivity data showed reduced
topological centrality of the anterior cingulate gyrus in high-risk sub-
jects who later converted to psychosis (Lord et al., 2012). There is thus
some, albeit limited, data to suggest that abnormalities in functional
brain organization predate the onset of psychosis, and may be pre-
dictive of transition to psychosis in at-risk individuals.

The notion that abnormal functional brain organization precedes
and possibly drives the manifestation of full-blow psychosis is further
supported by a graph theoretical study by our own group in a larger
sample that includes the current CHR sample (Collin et al., 2018). This
study showed that abnormal modular organization of the functional
connectome is more common in CHR individuals who subsequently
develop psychosis and predictive of shorter time to conversion. Our
current findings support these previous results as they show that the
predictive effect of the modular connectome measure holds up in cross-
validation and extends to outcome more broadly. Combined with va-
lidated clinical and cognitive predictors of psychosis, the combined
model achieved a weighted average PPV of 51%, which is a 39% im-
provement relative to chance-level (i.e. with chance-level here being
37% given that we assessed three outcome categories with varying
prevalence). Outcome prediction was particularly enhanced for the
poor-outcome group, for which the model yielded a positive predictive
value of 51%, given a prevalence of poor outcome in the overall sample
of just 26%. It is this poor outcome group for whom enhanced outcome
prediction is most important, as higher prognostic certainty may allow

Fig. 2. Predictor coefficients for combined prediction model. Plot showing the mean prediction coefficient and associated standard error for each individual predictor
variable in the combined model. Positive values indicate that increases in the predictor variable are associated with a relative increase in the likelihood of good
outcome, while negative values imply that increases in the predictor variable are associated with a relative increase in the likelihood of poor outcome. Predictors with
greatest influence (p < .05) are highlighted in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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more targeted early intervention and thereby hopefully improve out-
come.

Combined with previously identified clinical and cognitive pre-
dictors of outcome in prodromal psychosis, we found several influential
measures of within and between-network connectivity in the combined
prediction model. First, higher DMN and FP within-network con-
nectivity was associated with a higher likelihood of poor outcome. For
the DMN, this finding fits well within the existing literature showing
DMN hyperconnectivity in schizophrenia and high-risk individuals
(Anticevic et al., 2015; Brandl et al., 2019; Satterthwaite et al., 2015;
Shim et al., 2010; Whitfield-Gabrieli et al., 2009). The association be-
tween higher connectivity within the FP network (FPN) and poor out-
come is reported less frequently. Hyperconnectivity involving the FPN
has been shown in schizophrenia and CHR, but mostly between FPN
and other regions including (auditory) SM and DMN (Brandl et al.,
2019; Cao et al., 2018; Chahine et al., 2017; Sha et al., 2019). In-
triguingly, however, a recent study showed that higher cohesiveness of
the FPN is predictive of poor response to antipsychotic treatment
(Doucet et al., 2018). As our poor-outcome group comprised both CHR
converters and treatment-refractory subjects (i.e., showing worsened
symptoms despite antipsychotic treatment, without meeting formal
criteria for psychosis), we performed a post-hoc analysis to assess
group-differences in FPN and DMN connectivity across CHR remitter,
symptomatic, treatment-refractory, and converter groups. This analysis
showed that while the association between DMN hyperconnectivity and
poor outcome is indeed driven by the converter group, the association
between FPN hyperconnectivity and poor outcome seems to be driven
mainly by the treatment-refractory group, who show significantly
higher FPN within-network connectivity than both remitter and
symptomatic groups (Fig. 3). Our study thus supports previous findings
that increased connectivity in the frontoparietal central-executive net-
work is predictive of poor response to antipsychotic treatment
(Doucet et al., 2018).

In terms of between-network variables, our secondary analysis of
predictor coefficients showed that between-network connectivity be-
tween the LAN and the SM and DA network, as well as between DA and
SAL networks and the CER network were among the most influential
predictors in the combined model. Interestingly, whereas higher within-
network connectivity was associated with a higher chance of poor
outcome, between-network measures showed the opposite association,

with higher connectivity predicting a higher likelihood of good out-
come. This finding is of interest in light of hypotheses that schizo-
phrenia symptoms may stem from a failure to establish adequate in-
tegration between functional brain systems in development (Collin and
Keshavan, 2018). Furthermore, studies have suggested that the transi-
tion from adolescence to early adulthood, when psychosis tends to
develop, is characterized by a fundamental reorganization of large-scale
functional brain networks (Keshavan et al., 2014; Uhlhaas et al., 2009;
Uhlhaas and Singer, 2011). Abnormalities in the development of precise
temporal coordination between distributed brain networks may thus
contribute to the emergence of cognitive deficits and psychotic symp-
toms in schizophrenia (Uhlhaas and Singer, 2011). In line with these
hypotheses, our current findings suggest that higher functional co-
herence between large-scale brain networks is predictive of better
outcome in prodromal psychosis.

There are a number of limitations to our study. First, our clinical-
only prediction model failed to reach a significant level of prediction,
even though we selected clinical variables aimed specifically at pre-
dicting outcome in the prodromal stage. The importance of variable
selection in multimodal prediction models in the CHR stage has been
stressed in previous literature (Nelson et al., 2019). Specifically, an
important concern is that a too limited scope of variables included in
the clinical model may overemphasize the additive predictive power of
imaging data. As we aimed to predict outcome in a broader sense, in-
cluding psychotic conversion as well as ongoing subclinical symptoms
and symptomatic remission, our clinical-only model may have per-
formed better if it had also included variables associated with resilience
to psychosis. However, there is a paucity of research into factors con-
ferring resilience to psychosis. Future studies including resilience fac-
tors in addition to risk factors may help improve outcome predictions in
at-risk groups. The clinical-only model may have also performed better
if we had included a healthy control group, in line with the notion that
the effectiveness of clinical predictors of psychosis is mediated pri-
marily by their ability to ‘rule out’ psychosis (Fusar-Poli et al., 2015).
However, the purpose of our current study was specifically to differ-
entiate among high-risk individuals in terms of psychosis, rather than
identifying those not at risk. Second, rs-fMRI-derived measures of
functional connectivity are known to be sensitive to physiological and
head motion artifacts (Power et al., 2012; Satterthwaite et al., 2012).
We dealt with these issues to the best of our ability by using the ana-
tomical CompCor (aCompCor) method to reduce physiological noise
(Behzadi et al., 2007) and the Artifact Detection Tool (art) to identify
motion and artifactual timepoints and mititgate their effects (Whitfield-
Gabrieli and Nieto-Castanon, 2012), but we cannot rule out the possi-
bility that these confounders influenced our results. Similarly, other
factors such as levels of stress, anxiety, and attention/awareness, which
are known to influence functional brain patterns (Bilevicius et al., 2018;
Pearlson, 2017; Simpson et al., 2001; Soares et al., 2013) may have
influenced our results, although we found no significant group-differ-
ences in SIPS items measuring tolerance to stress and attention pro-
blems. Third, we reiterate that our post-hoc analysis identifying vari-
ables that contributed most predictive information to the overall model
is not a proper confirmatory test. Our analysis is intended to allow a
meaningful comparison of the relative influence of predictor variables
and highlight those with high influence, but we note that predictor
coefficients of several other clinical and imaging variables were similar
in magnitude. Validation in an independent sample is the only proper
way to ascertain the relative importance of the predictor variables in
our current study to outcome prediction in CHR more generally. Col-
laborations among CHR consortia are warranted to allow external va-
lidation of neuroimaging findings in the high-risk stage. Such future
studies would benefit from improved resolution of rs-fMRI acquisition.

In conclusion, the current findings suggest that rs-fMRI-derived
measures of connectome organization and functional connectivity, on
their own or in addition to clinical predictors of psychosis, improve
outcome prediction in the prodromal stage. Outcome prediction was

Fig. 3. Post-hoc group-comparison of DMN and FPN within-network con-
nectivity. Bar chart showing result of post-hoc analysis comparing within-net-
work connectivity for DMN and FP networks across four outcome groups,
confirming the hypothesis that the association between DMN hyperconnectivity
and poor-outcome was driven particularly by converters, while FPN hy-
perconnectivity was mainly associated with treatment-refractory status.
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found to be particularly enhanced for poor outcome CHR individuals,
which is a promising result as improved prediction of those at the
highest risk for poor outcome may contribute to targeted early inter-
vention aimed at improving clinical and functional outcome. Moreover,
our findings support the notion that changes in functional connectivity
and brain network organization precede and possibly drive subsequent
progression of illness in prodromal psychosis.
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