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Objective: To assess cortical thickness (CT) and surface 
area (SA) of frontal, temporal, and parietal brain regions 
in a large clinical high risk for psychosis (CHR) sample, 
and to identify cortical brain abnormalities in CHR who 
convert to psychosis and in the whole CHR sample, com-
pared with the healthy controls (HC). Methods: Magnetic 
resonance imaging, clinical, and cognitive data were ac-
quired at baseline in 92 HC, 130 non-converters, and 22 
converters (conversion assessed at 1-year follow-up). CT 
and SA at baseline were calculated for frontal, temporal, 
and parietal subregions. Correlations between regions 
showing group differences and clinical scores and age were 
also obtained. Results: CT but not SA was significantly re-
duced in CHR compared with HC. Two patterns of findings 
emerged: (1) In converters, CT was significantly reduced 
relative to non-converters and controls in the banks of supe-
rior temporal sulcus, Heschl’s gyrus, and pars triangularis 
and (2) CT in the inferior parietal and supramarginal 
gyrus, and at trend level in the pars opercularis, fusiform, 
and middle temporal gyri was significantly reduced in all 
high-risk individuals compared with HC. Additionally, re-
duced CT correlated significantly with older age in HC 
and in non-converters but not in converters. Conclusions: 
These results show for the first time that fronto-temporo-
parietal abnormalities characterized all CHR, that is, 
both converters and non-converters, relative to HC, while 

CT abnormalities in converters relative to CHR-NC and 
HC were found in core auditory and language processing 
regions.

Key words:   clinical high risk for psychosis/SA/CT/
language network/prediction of conversion

Introduction

Structural abnormalities in frontal, temporal, and pari-
etal lobes are common in both early and chronic schiz-
ophrenia.1–6 Cognitive functions sub-served by these 
cortices, including language and reasoning, are also af-
fected,7,8 as is the progression of these structural abnor-
malities over the course of illness.4,5,9–11 Across diagnostic 
categories, including affective and psychotic illnesses, 
disruption of a common set of brain regions, together 
forming the fronto-parietal connectome network has re-
cently been described.12,13 Individuals at clinical high risk 
for developing psychosis (CHR) represent a heteroge-
neous population, whose clinical profiles are shaped by 
prodromal symptoms and whose rate of conversion to 
psychosis is typically between 15% and 30%, depending 
in part on whether follow-up assessments were obtained 
1, 2, or 3  years past baseline (eg,14–17). We hypothesize 
that similar to populations with established psychiatric 
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diagnoses13 who show abnormalities in frontal, temporal, 
and parietal cortices, CHR will demonstrate abnormal-
ities in these brain regions as well, with some abnormal-
ities characterizing all CHR compared with controls, and 
other abnormalities characterizing subjects who transi-
tion to psychosis (converters: CHR-C) compared with 
both subjects who do not transition to psychosis (non-
converters: CHR-NC) and healthy controls (HC).

Evidence of brain structural abnormalities is well 
documented in chronic and first episode schizophrenia, 
while evidence of such abnormalities is less established 
for individuals at clinical high risk for developing schiz-
ophrenia, although the genetic contribution to schizo-
phrenia suggests a neurodevelopmental component18–23 to 
observed brain changes. Several brain structural magnetic 
resonance imaging (MRI) studies in CHR report volume 
reductions in converters, compared with non-converters: 
CHR-NC.9,24,25 Additionally, brain surface contractions 
in prefrontal cortex26 and reductions in gray matter 
volume of temporal, and parietal cortices, and cingulate 
gyrus27,28 have been observed, but significance of results 
is limited by small sample sizes and methodological ap-
proaches.26,28 On the other hand, a somewhat larger CHR 
study (7 converters during a 28 months follow-up) in an 
Asian population did not find gray matter volume reduc-
tions,29 nor did a large study involving a North American 
sample at baseline.30 Instead, steeper rates of gray matter 
reductions in converters compared with non-converters 
and controls were reported.30 Chung et al31 grouped CHR 
into CHR stable/remitted (mild symptoms or remission) 
and CHR decline (severe symptoms or conversion) with 
each group further subdivided into younger (12–17 years 
old) and older (18–35 years old) groups. This approach to 
CHR categorization yielded evidence of cortical deficits 
in the younger but not in the older CHR group. While ap-
proach allows for constructing larger and more balanced 
subject groupings, it does not inform about brain differ-
ences in relation to conversion, an approach adopted in 
the current study. Furthermore, Cannon30 and Chung31 
articles are based on data acquired at eight different 
sites/scanners, in contrast to our study based on one 
scanning site.

Several recent studies investigating brain structural 
integrity in CHR have adopted a measure of cortical 
thickness (CT)30–34 (see Bartholomeusz et al35 for review), 
while surface area (SA) has only been investigated in just 
a handful of CHR studies.31,34,36,37 Since brain volume is 
the product of CT and SA, investigating both in the same 
study makes it possible to evaluate their relative contri-
bution to volumetric brain abnormalities in CHR and 
tease apart different neurodevelopmental contributions 
to schizophrenia pathology. Indeed, CT and SA are ge-
netically unrelated,38 with distinct maturational stages.39,40 
In the current study, accordingly, we assessed both CT 
and SA.

By using a priori defined regions of interests (ROIs), 
several studies33,41,42 have identified CT abnormalities in 
CHR populations, although some of these studies in-
cluded no converters41 or relied on multisite MRI acqui-
sition and/or low resolution scanners33,42 CT reductions in 
both prefrontal and parietal cortices have also been iden-
tified by using whole brain analysis (eg, Jung et al43 [six 
converters included] and Kwak et  al44 [eight converters 
included], but not all studies report abnormalities.29,30

The analytic approach in this study falls between a 
conservative whole brain analysis and an a priori defined 
ROI approach. Specifically, we focused on the frontal, 
temporal, and parietal lobes.12 Within these three lobes, 
we examined all lobe subregions. We were interested 
in testing the hypothesis that there would exist a set of 
fronto-temporo-parietal brain abnormalities character-
izing the whole at-risk group, as reported in older popu-
lations with mixed psychiatric diagnoses, while another 
set of abnormalities would characterize converters rel-
ative to both non-converters and HC at 1-year clinical 
follow-up assessment; this hypothesis, to the best of our 
knowledge, has not been assessed before.

Compared with previous studies, we reduced sev-
eral sources of  heterogeneity and variability. First, 
this large Chinese sample (N  =  244), similar to most 
Asian population studies, had low rates of  drug abuse 
and low dosages of  antipsychotic medications, major 
confounds in detecting subtle structural brain abnor-
malities.6,29,44,45 Second, subject recruitment was based 
on physician referrals only, thereby ensuring a more 
homogenous patient sample.44 Third, all brain scans 
were acquired on one MR scanner/one site, thereby re-
ducing variability resulting from the use of  different 
scanners46 (eg, Cannon study30 (see, eg, harmonization 
papers and discussions by Mirzaalian et al47 and Cetin-
Karayumak et  al48). The issue of  multiple scanners is 
of  crucial importance for the study of  subtle neuroim-
aging abnormalities.

As brain abnormalities in language-related brain re-
gions occur in prodromal stages20,49,50 and language ab-
normalities are core features of schizophrenia,20,51–53 we 
further hypothesized that primary language regions, 
as defined by current models of language and current 
research54–58 (see Supplementary figure S1) would be 
affected in converters. In support of this hypothesis, sev-
eral recent studies of populations at CHR indicate that 
features of abnormal language distinguish converters 
from non-converters50,59,60 and schizophrenia from other 
disorders.61

Additionally, we hypothesized that a negative as-
sociation between age and CT observed in HC, and 
indicative of  developmentally driven maturation,40 
would be absent in CHR, suggesting a possible 
neurodevelopmental component to predicted CT and 
SA abnormalities.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa127#supplementary-data
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Method

Participants and Clinical Procedures

Data for this study were acquired at the Shanghai Mental 
Health Center (SMHC), Shanghai, China, as part of the 
ShangHai-At-Risk-for-Psychosis (SHARP) program. 
Participants included CHR individuals (n = 152), of whom 
22 were CHR-C: 21 were diagnosed with schizophrenia 
and 1 with bipolar disorder with psychotic features at a 
1-year clinical follow-up, and 130 were CHR-NC. These 
subjects were matched to HC (n  =  92) for age, gender, 
and handedness (see table 1). A total of 5 of 22 CHR-C 
(22.7%) and 9/130 CHR-NC (9%) were medicated with 
low dose second generation antipsychotics.

Recruitment and clinical assessments, including con-
version criteria, are described in detail in Li et al17 and 
Zhang et al.62 Briefly, the Prodromal Symptoms/Scale of 
Prodromal Syndromes (SIPS/SOPS), which was validated 
for use in Chinese samples,63 was administered. Subjects 
who met SIPS diagnostic criteria were classified as CHR. 
This study was approved by the Human Subjects Review 
Committees at SMHC and at the Beth Israel Deaconess 
Medical Center (BIDMC) in Boston. All participants 
signed an informed consent document prior to study 
participation.

MRI Acquisition and Parameters

MR scans were acquired on a Siemens 3T MR B17 
(Verio) system, 32-channel head coil, located at SMHC. 
For the T1-weighted images the following parameters 
were used: MP-RAGE, repetition time (TR) = 2300 ms, 
echo time (TE) = 2.96 ms, flip angle = 9 degree, field of 
view (FOV) = 256 mm, and voxel size = 1 mm × 1 mm × 
1 mm for 192 contiguous sagittal slices.

Image Processing

Images were visually inspected for possible movement 
or ghosting artifacts and were then axis realigned and 

centered. Automatic brain masking was conducted using 
Multi Atlas Brain Segmentation.64 Segmentation of the 
scans according to the Desikan–Killiany atlas was exe-
cuted using FreeSurfer 5.365 to extract CT and SA. All 
segmentations were then validated by visual inspection.

Statistical Analyses

Demographic and clinical variables were analyzed using 
univariate ANOVAs or χ 2 tests (see table 1).

All subregions within each lobe were delineated ac-
cording to the Desikan–Killiany Atlas. Prior to MRI 
analyses, data were tested for normality using the Shapiro–
Wilk test. Additionally, CT and SA of each region in the 
right and left frontal, temporal, and parietal lobes were 
Z-scored according to appropriate mean and standard 
deviation of HC. The focus of analyses was on group 
differences in each of the lobes with secondary focus on 
hemisphere effects. In the first step, separate analyses were 
performed for each lobe, that is, for frontal, temporal, and 
parietal lobe, and separately for CT and for SA. In the 
analyses, repeated measures MANOVAs were employed 
with group (HC, CHR-NC, and CHR-C) with gender as 
between-subject factors, and hemisphere (left and right) 
and lobe-specific subregions (region) as within-subject 
factors. Age was used as a covariate in all analyses. The 
intracranial volume (ICV) was used as covariate in all 
analyses involving SA variables. The MANOVA for the 
frontal lobe included 11 sub-regions in each hemisphere: 
superior (SFG), rostral and caudal middle frontal gyri, 
the pars opercularis, triangularis, and orbitalis; lateral 
and medial orbitofrontal cortex, precentral, paracentral 
gyri, and frontal pole. The MANOVA for the temporal 
lobe included nine sub-regions, nine in each hemisphere: 
superior (STG), middle (MTG), and inferior temporal 
gyri (ITG); banks of the superior temporal sulcus (bSTS); 
fusiform gyrus (FG); Heschl’s gyrus (HG); entorhinal 
cortex; temporal pole and para-hippocampal cortex. The 
MANOVA for the parietal lobe included five sub-regions, 

Table 1.  Group characteristics at baseline

Subjects #

HC CHR-NC CHR-C Statistics Group Differences

92 130 22 P (F/χ2)  

Age 18.8 ± 4.7 18.7 ± 4.9 19.5 ± 5.2 .77  
Gender M/F 46/46 61/69 15/7 .183  
Race/ethnicity Chinese Chinese Chinese   
GAF 80.3 ± 2.2 54.3 ± 8.5 52.1 ± 7.7 .001 CHR-C=CHR-NC<HC
Medicated/un-medicated 0/92 21/109 6/16 .23  
SOPS total N/A 37.2 ± 10.9 36.6 ± 11.1 .84 CHR-C=CHR-NC
  Positive symptoms N/A 10.1 ± 3.6 10.0 ± 3.2 .86 CHR-C=CHR-NC
  Disorganized symptoms N/A 6.53 ± 3.2 6.5 ± 2.9 .97 CHR-C=CHR-NC
  Negative symptoms N/A 11.3 ± 6.0 11.6 ± 6.5 .84 CHR-C=CHR-NC
  General symptoms N/A 9.2 ± 3.3 8.5 ± 3.0 .41 CHR-C=CHR-NC
HVLT 26.2 ± 3.7 22.8 ± 5.5 20.9 ± 4.5 <.001 CHR-C=CHR-NC<HC
BVMT 30.3 ± 3.6 27.2 ± 5.8 24.0 ± 6.8 <.001 CHR-C<CHR-NC<HC
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Table 2.  Frontal Lobe: Follow-up MANOVAs Results for Each Region Separately

Effect F Hypothesis df Error df Sig. Partial η2

Superior frontal gyrus  
Group 0.83 2.000 237.000 .44 .007
Hemisphere 7.3 1.000 237.000 .007 .03
Hemisphere × Group 1.1 2.000 237 0.35 .009
Rostral middle frontal gyrus
Group 2.1 2.000 237.000 .13 .01
Hemisphere 4.3 1.000 237.000 .04 .018
Hemisphere × Group 1.8 2.000 237.000 .165 .015
Caudal middle frontal 
Group .71 2.000 237.000 .49 .006
Hemisphere 1.7 1.000 237.000 .192 .007
Hemisphere × Group 179 2.000 237.000 .836 .002
Pars opercularis
Group 3.8 2.000 237.000 .024 .036
Hemisphere .238 1.000 237.000 .626 .001
Hemisphere × Group 2.179 2.000 237.000 .115 .018
Pars orbitalis
Group 1.1 2.000 237.000 .33 .004
Hemisphere 4.99 1.000 237.000 .026 .021
Hemisphere × Group .347 2.000 237.000 .707 .003
Pars triangularis      
Group 5.0 2.000 237.000 .007 .035
Hemisphere 5.782 1.000 237.000 .017 .024
Hemisphere × Group .467 2.000 237.000 .628 .004
Latero-orbital frontal      
Group 1.1 2.000 237.000 .33 .005
Hemisphere .110 1.000 237.000 .741 .000463
Hemisphere × Group .625 2.000 237.000 .536 .005
Medial-orbital Frontal      
Group 1.24 2.000 237.000 .29 .012
Hemisphere 18.83 1.000 237.000 .00002 .074
Hemisphere × Group 1.892 2.000 237.000 .153 .016
Precentral      
Group .26 2.000 237.000 .77 .004
Hemisphere 2.112 1.000 237.000 .147 .009
Hemisphere × Group 3.397 2.000 237.000 .035 .028
Paracentral      
Group 0.485 2.000 237.000 .62 .007
Hemisphere .59 1.000 237.000 .443 .002
Hemisphere × Group .634 2.000 237.000 .531 .005
Frontal Pole      
Group 1.67 2.000 237.000 .19 .012
Hemisphere 28.3 1.000 237.000 .00001 .1
Hemisphere × Group .374 2.000 237.000 .689 .003

in each hemisphere: superior (SPG), inferior (IPG), 
supramarginal (sMG), postcentral gyri (pCG), and the 
precuneus. Bonferroni correction was entered into each 
MANOVA model.

In the second step of  analyses, we followed up on 
all significant interactions involving group: between 
group and region, or between group, gender, and 
region. Accordingly, repeated measures MANOVAs 
with group or group and gender as independent vari-
ables and hemisphere as a within-subjects factor were 
carried out for each subregion of  each lobe sepa-
rately. Bonferroni correction was entered into each 
MANOVA model.

Where group differences were identified, pairwise com-
parisons were used to examine group differences among 
three groups in a given region. Bonferroni corrections 
were applied to correct for multiple comparisons.
Correlational Analyses.  For clinical-structural MRI 
correlations, positive, negative, general, and disorganiza-
tion scores from the Structured Interview for Prodromal 
Syndromes (SIPS)63,66 were used. Age was controlled for, 
and Spearman’s r values are reported.

Correlations between age and CT were also assessed 
for CHR-C and CHR-NC separately given the different 
statistical results obtained for these two groups (SA was 
not included given a lack of significant group differences).
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Results

Participants’ Group Characteristics

The three groups did not differ in age or gender, 
but CHR-C and CHR-NC Global Assessment of 
Functioning (GAF) scores were significantly lower than 
HC, as expected (see table 1; see Supplementary materials 
for morphometric analyses as a function of GAF scores).

Imaging Results

Main imaging results are summarized in tables 2–5; and 
further in Supplementary table S1A–C.

CT Analyses

Frontal Lobe.  The omnibus MANOVA with 11 subre-
gions showed a significant interaction of Group by Region 
by Gender [F(20, 456) = 1.7; P = .016; η2 = 0.07]. The fol-
low-up MANOVAs demonstrated that this significant in-
teraction was driven by significant CT group differences 

in the pars triangularis and the pars opercularis (see 
table 2).

Pairwise comparisons showed that CT of pars 
triangularis in converters was significantly lower than in 
non-converters (P = .0073; corrected P = .022) and in HC 
(P = .012; corrected P = .036). No significant difference 
was found between non-converters and HC (see table 5).
Pars Opercularis .  CT in converters was significantly 
lower than in HC (P  =  .012, corrected P  =  .036) but 
was not different than in non-converters (P = .18; cor-
rected P = .54), with a trend level CT reduction in non-
converters relative to HC (P = .023; corrected P = .076; 
table 5).
Frontal lobe CT hemisphere effects identified in fol-
low-up MANOVAs:

Several regions showed larger left than right hem-
isphere, without significant group interactions (see 
table 2).
Temporal Lobe.  The omnibus MANOVA with nine 
regions showed that there was a main effect of group 

Table 3.  Temporal Lobe: Follow-up MANOVAs Results for Each Region Separately

Effect F Hypothesis df Error df Sig. Partial η2

Superior temporal gyrus  
Group 2.6 2.000 240.000 .075 .121
Hemisphere 1.186 1.000 240.000 .277 .005
Hemisphere × Group .547 2.000 240.000 .005 .019
Middle temporal gyrus
Group 5.9 2.000 240.000 .003 .049
Hemisphere 6.813 1.000 240.000 .01 .028
Hemisphere × Group 2.283 2.000 240.000 .104 .019
Inferior temporal gyrus
Group 2.8 2.000 240.000 .06 .024
Hemisphere .294 1.000 240.000 .588 .001
Hemisphere × Group 1.477 2.000 240.000 .230 .012
Banks of the superior temporal sulcus
Group 4.4 2.000 240.000 .013 .037
Hemisphere .371 1.000 240.000 .543 .002
Hemisphere × Group .309 2.000 240.000 .734 .003
Fusiform
Group 4.6 2.000 240.000 .01 .039
Hemisphere .007 1.000 240.000 .934 .00003
Hemisphere × Group .758 2.000 240.000 .47 .006
Heschl gyrus      
Group 6.1 2.000 240.000 .003 .047
Hemisphere 1.224 1.000 240.000 .27 .005
Hemisphere × Group .234 2.000 240.000 .792 .002
Entorhinal cortex      
Group .73 2.000 240.000 .48 .006
Hemisphere 3.079 1.000 240.000 .08 .013
Hemisphere × Group .57 2.000 240.000 .566 .005
Temporal pole      
Group 2.116 2.000 240.000 .123 .017
Hemisphere .738 1.000 240.000 .391 .003
Hemisphere × Group 1.172 2.000 240.000 .311 .01
Para-hippocampal cortex      
Group .14 2.000 240.000 .87 .001
Hemisphere 6.207 1.000 240.000 .013 .025
Hemisphere × Group 1.243 2.000 240.000 .29 .01

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa127#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa127#supplementary-data
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Table 5.  Post Hoc Comparisons

Group Differencesa HC vs CHR-NC Cohen’s db HC vs CHR-C Cohen’s dc
CHR-NC vs 

CHR-C Cohen’s dd

Converters-only CT 
abnormalities 

      

Pars Triangularis P = .99 (0.33) d = 0.03 P = .036 (0.012) d = 0.72 P = .022 (0.0073) d = 0.72
Banks of STS P = .72 (0.24) d = 0.17 P = .024 (0.008) d = 0.74 P = .048 (0.016) d = 0.6
Heschl Gyrus P = .3 (0.1) d = 0.14 P = .006 (0.002) d = 0.96 P = .036 (0.012) d = 0.6
CT abnormalities 
common to All CHR

      

Pars Opercularis P = .075 (0.025) d = 0.3 P = .036 (0.012) d = 0.6 P = .54 (.18) d = 0.26
Supramarginal P = .03 (0.01) d = 0.7 P = .003 (0.001) d = 0.76 P = .18 (0.06) d = 0.38
Inferior Parietal P = .006 (0.002) d = 0.4 P = .002 (0.0007) d = 0.7 P = .33 (0.1) d = 0.3
MTG P = .07 (0.023) d = 0.3 P = .003 (0.001) d = 0.8 P = .135 (0.045) d = 0.3
Fusiform P = .072 (0.024) d = 0.3 P = .018 (0.006) d = 0.63 P = .42 (0.14) d = 0.3

aFor each post hoc comparison, uncorrected P values are listed in parenthesis.
bFor all, HC>CHR-NC.
cFor all, HC>CHR-C.
dFor all, CHR-NC>CHR-C.

[F(2,237) = 3.82; P = .023, η2 = 0.031] with lower tem-
poral lobe CT in converters compared with HC (P = .02; 
corrected P = .06) and CT of non-converters not different 
from converters (P = .11; corrected P = .33) or from HC 
(P = .65; corrected P  =  1.00). The interaction between 
Region and Group was significant [F(16,460)  =  2.1; 
P = .007, η2 = 0.07].

The follow-up MANOVAs showed that the interaction 
was driven by four regions, including Heschl gyrus, the 
banks of the superior temporal sulcus, the middle tem-
poral gyrus, and the fusiform gyrus (see table 3).

Pairwise comparisons showed that CT in converters 
was lower than in non-converters and HC for the Heschl 

gyrus and the banks of the superior temporal sulcus; 
while CT of non-converters and HC did not differ (see 
table 5).

CT of the middle temporal and the fusiform gyri was 
equivalent in converters and non-converters, and lower 
than in HC (see table 5).
Temporal lobe CT hemisphere effects identified in fol-
low-up MANOVAs:

The middle temporal gyrus and the parahippocampal 
cortex had greater left than right CT in all groups (see 
table 3).
Parietal Lobe.  The omnibus MANOVA with five re-
gions showed a main effect of group [F(2,237) = 3.8, P 

Table 4.  Parietal Lobe: Follow-up MANOVAs Results for Each Region Separately

Effect F Hypothesis df Error df Sig. Partial η2

Superior parietal gyrus  
Group 1.916 2.000 240.000 .15 .015
Hemisphere 1.940 1.000 240.000 .165 .008
Hemisphere × Group .138 2.000 240.000 .871 .001
Inferior parietal gyrus
Group 7.64 2.000 240.000 .001 .063
Hemisphere .553 1.000 240.000 .458 .002
Hemisphere × Group .29 2.000 240.000 .749 .002
Supramarginal
Group 6.33 2.000 240.000 .002 .053
Hemisphere 4.485 1.000 240.000 .035 .018
Hemisphere × Group .331 2.000 240.000 .718 .003
Postcentral
Group 1.96 2.000 240.000 .143 .015
Hemisphere .907 1.000 240.000 .342 .004
Hemisphere × Group 1.526 2.000 240.000 .219 .013
Precuneus      
Group 2.69 2.000 240.000 .02 .022
Hemisphere 1.945 1.000 240.000 .164 .008
Hemisphere × Group .432 2.000 240.000 .650 .004



568

E. C. del Re et al

= .024; η2  =  0.031] with smaller CT in converters rela-
tive to HC (P  =  .013; corrected P  =  .04), while CT of 
non-converters did not differ from converters (P = .047; 
corrected P = .14) or HC (P =  .21; corrected P =  .63). 
There was also a significant interaction between Region 
and Group [F(8,468) = 2.16, P = .03, η2 = 0.036].

Follow-up MANOVAs showed that the interaction was 
driven by significant CT differences of the inferior pari-
etal and the supra-marginal gyri (see table 4).

Pairwise comparisons showed that CT of the infe-
rior parietal did not differ between converters and non-
converters but was lower than in HC (table 5). CT of the 
supra-marginal gyrus did not differ in converters and 
non-converters but was lower than in HC (table 5).
Parietal lobe CT hemisphere effects identified in fol-
low-up MANOVAs.

The CT of the supra-marginal gyrus, inferior parietal 
gyrus, and precuneus was greater in the left hemisphere in 
all groups (see table 4).

SA Analysis

Lobes.  SA did not differ statistically among the 
three groups for any of the three lobes (frontal lobe 
[F(2,241) = 1.0; P = .37], temporal lobe [F(2,241) = 0.45; 
P = .64], or parietal lobe [F(2,237) = 2.3, P = .1]).

Correlational Analyses

Relationship Between Age and CT.  We explored the re-
lationship between age and CT separately in CHR-C, 
CHR-NC, and HC in the eight brain regions that showed 
statistically significant group differences. CT for all regions, 
with the exception of HG, was strongly and inversely cor-
related with age in both HC and CHR-CN. That is, older 
age was associated with reduced CT. In contrast, no statis-
tically significant correlations were found in the CHR-C 
group (see figure 2 and Supplementary table S2).
Clinical Variables.  No significant correlations were 
found between CT and SIPS scores.

Discussion

This examination of CT and SA in frontal, temporal, and 
parietal lobes in a large group (N = 152) of individuals at 
CHR revealed that CT, but not SA, was reduced in CHR. 
As volume is the product of CT and SA, these results sug-
gest that CT is the major contributor to reported volume 
reductions in CHR. Notably, this is the first report to iden-
tify both a set of CT abnormalities that characterizes con-
verters and non-converters (ie, the whole CHR sample), 
and another set of abnormalities that characterizes con-
verters relative to non-converters and HC (see figure 1).

Individuals at CHR represent a diverse population, 
where only up to a third of individuals will convert to 
psychosis.17 In populations with established, mixed 

psychiatric diagnoses, functional connectivity studies 
have identified abnormalities in a set of regions involving 
the frontal, temporal and parietal cortices, and the fronto-
parietal network.12,13,67

In this study, the CHR group irrespective of outcome, 
as assessed at 1-year follow-up, showed CT abnormal-
ities largely overlapping with the fronto-parietal network 
described in functional connectivity studies68 of mixed 
psychiatric populations.12,13 The converters to psychosis, 
relative to both non-converters and HC, showed CT ab-
normalities in the Heschl gyrus, the banks of the superior 
temporal sulcus and the pars triangularis. These regions 
are regarded as the core of the language network.54–58

Baseline CT reductions found in the current study con-
trast with two other large CHR studies of European an-
cestry29,30 but agree with the large study of Asian CHR,44 
although this study lacks comparisons between converters 
and non-converters. Possible reasons for the lack of CT 
reductions29,30 may include a low number of converters 
(eg,29) and the use of multiple scanners30 which might 
make accurate measurements of smaller cortical regions 
more challenging. As discussed above, Chung et al31 study 
reported CHR-HC differences across a number of meas-
ures but did not examine converter-non-converter status 
relative to HC, which complicates direct comparisons 
with the current study.

Thus, the different findings may reflect heterogeneity 
introduced by recruitment methods,16,17,29,44,69 smaller 
subject cohorts and the utilization of multiple scanners 
(eg,30,36,46,70,71). In the current large Asian study, MR data 
were acquired on one scanner at one acquisition site using a 
large CHR cohort with minimal exposure to drug abuse and 
with limited use of antipsychotic medication. Furthermore, 
all subjects were accepted into the study based on physician 
referral, which reduces sampling variability. Thus, most 
common sources of variability were reduced in this study.

Two important findings emerge from this study. (1) 
Cortical thinning, at baseline, in all CHR, that is, irrespec-
tive of the conversion status, was observed in the fronto-
temporo-parietal network including in: (a) the frontal lobe, 
where CT reductions were found in the pars opercularis, 
(b) the temporal lobe, where CT reductions were found in 
the middle temporal and the fusiform gyri, and (c) the pa-
rietal lobe, with CT reductions in the supramarginal and 
the inferior parietal gyri (see figure 1). (2) CT reductions in 
CHR-C relative to both HC and CHR-NC were observed 
in the frontal (pars triangularis) and temporal regions 
(Heschl gyrus and banks of superior temporal sulcus; see 
figure 1). We interpret these regions as primary auditory 
and core language regions following the current literature 
(eg,54,55,72–74 also see Supplementary figure S1).

The status of  conversion was assessed at 1-year clin-
ical follow-up. Thus, observed CT reductions in CHR-C 
at baseline may serve as markers of  transition to psy-
chosis, while CT abnormalities observed in all CHR 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa127#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa127#supplementary-data
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(ie, both converters and non-converters) might serve 
as markers of  high-risk status, irrespective of  conver-
sion. CT reductions in converters relative to both non-
converters and HC affected regions including the pars 
triangularis, the Heschl gyrus and the banks of  the su-
perior temporal sulcus, which are involved in auditory 
processing75 speech (including prosody processing)75 and 
semantic and syntactic processing.76,77 Thus, conversion 
to psychosis was related to CT reductions in primary 
auditory and core portions of  language regions. These 
findings implicating language-related brain regions in 
CHR are novel but dovetail nicely with recent func-
tional MRI studies in CHR that identified abnormal-
ities78–80 in several brain regions where CT reductions 
were observed in the current study.

The regions affected in the whole CHR group (ie, 
converters + non-converters) spanned the frontal, the 
temporal, and the parietal lobe. These fronto-temporo-
parietal brain subregions are involved in an array of 
cognitive functions and are activated according to the 
cognitive task at hand.68,81–83 Functions that have been 

ascribed to these regions include semantic, phonolog-
ical, and orthographic processes (IPG and FG),84 mul-
timodal association functions involved in word reading, 
comprehension, and semantic analyses (angular gyrus; 
see Seghier85), interfacing between phonetic and articu-
latory representations (sMG; Gow86), and between pho-
netic and semantic representations (MTG). Furthermore, 
the fronto-temporo-parietal regions contribute to cogni-
tive flexibility: self-agency processing,87 working memory 
processes,88 bottom-up attention, undirected thinking, 
episodic memory, and social cognition (see ref. 89 for a 
review), delayed reward discounting,90 theory of mind91 
(important for facilitating the development of infer-
ences about complex linguistic messages), and face proc-
essing.92,93 Notably, all of these functions make full and 
flexible use of human language possible.94

Furthermore, our data cautiously support the hypoth-
esis of abnormal neurodevelopmental CT trajectories 
in CHR. More specifically, significant negative relation-
ships were observed between CT and age in HC and in 
CHR-NC in several of the regions where CT reductions 

Fig. 1.  CT differences between HC and converters and non-converters for all regions where there was a significant interaction of 
Diagnosis × Region. (A) The group differences are depicted for brain regions affected in converters only and (B) brain regions affected in 
the whole CHR sample. Z-scores of CT in healthy controls (HC; black bar), non-converters (CHR-NC; gray bar), and converters (CHR-
C; red bar) in left and right hemisphere (R, right hemisphere; L, left hemisphere). Heschl’s gyrus (light blue color); banks of the superior 
temporal sulcus (bSTS, green color); pars triangularis (PTria, red color); Inferior parietal (Inf Par, pink color); supramarginal (Sup Mar, 
blue color); pars opercularis (P Operc, yellow color); middle temporal gyrus (MTG, orange color); fusiform (Fus, deep green color). See 
Method section for P values.
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were observed (age range: HC:14–34; CHR-NC: 13–32). 
Importantly, this relationship (indicative of a neurotypical 
development) was absent in converters to psychosis (age 
range 13–36; see figure 2).

Cortical thinning is characteristic of brain maturation 
as a function of age40,95,96 and likely results from multiple 
neurodevelopmental processes such as pruning,97 mye-
lination, and cortical morphology.98 Pruning is believed 

Fig. 2.  Correlations between CT and age. (A) Correlations between the bilateral banks of the superior temporal sulcus (bSTS) and 
age; (B) Correlations between the middle temporal gyrus (MTG) and age. In both healthy controls (HC; top panels, dots) and in non-
converters (CHR-NC; middle panels), there is a significant negative correlation between age and CT, that is older age is associated 
with smaller CT. This negative correlation is interpreted as an index of maturation processes. In converters (CHR-C; lower panels), 
the correlation between CT and age is not significant. The insert in the CHR-C panels depict the correlation in CHR-C between 12 
and 25 years of age to demonstrate that eliminating the two CHR-C older subjects does not change the result. Least square fit lines are 
drawn. Pearson’s r and probability values are as indicated.
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to reflect prolonged fine-tuning of neuronal connections 
that extends beyond adolescence in typically developing 
individuals,40,96,99,100 while myelination indicates growth of 
myelin sheaths around axons, a process that in tradition-
ally analyzed MRI appears as thinning of the gray matter 
at the gray/white matter boundary. Increased gyrification/
cortical folding might also explain the apparent perceived 
thinning of the cortex during development.101 The three 
possibilities are not mutually exclusive, and our data in 
relation to age might result from any of these processes.

Two other studies (de Wit et al37 and Chung et al31) also 
hint at the interactions between neurodevelopmental and 
disease processes. While the results of these studies are 
somewhat difficult to compare with our results given dif-
ferences in methodology, together they underscore the 
importance of accounting for age when examining neu-
roanatomical changes in CHR samples. Our correlational 
analyses of relationships between age and CT explicitly 
show the impact of conversion on neurodevelopmental 
trajectories (but see below) and, together with the ex-
amination of GAF scores and CT reductions (see 
Supplementary Materials) further clarify both the de 
Wit and the Chung results: conversion to psychosis im-
pacts normal developmental trajectories. The role of age 
is succinctly and eloquently discussed in Andreou and 
Borgwardt’s recent review.102

However, given the relatively low N of CHR-C, which 
may have contributed to the absence of significant nega-
tive correlations in the CHR-C group in the current re-
sults, this observation will need to be replicated in a larger 
cohort of CHR-C.

Several limitations to this study deserve mention. First, 
no effects of gender were observed, although gender-
related brain differences in CHR have been reported in 
a study examining CT in 26 CHR and 29 HC using a 
1.5 T magnet.103 It is possible that the sample low N and 
low image resolution contributed to the discrepant re-
sults. Second, we did not obtain significant correlations 
between abnormal CT and clinical symptoms, in contrast 
to the Kwak et al44 which assessed 74 CHR (6 converters) 
and 34 HC. The source of these differences remains un-
clear, though the current study, with 152 CHR (22 con-
verters) and 92 HC, is the largest to date conducted in 
an Asian population both in terms of overall sample size 
and number of converters. Differences in sample char-
acteristics29,30,43,44 might have contributed to the different 
outcomes. Third, the age analysis in relation to CT was 
cross-sectional rather than longitudinal. We will fol-
low-up this cohort longitudinally at 2 and 3 years post-
baseline to assess CT changes over time in individual 
subjects. Fourth, our CHR sample was assessed clinically 
at a 1-year follow-up, which means that some CHR-NC 
subjects will likely convert to psychosis after the 1-year 
and alter observed relationships between the CHR-NC, 
CHR-C, and HC groups. Fifth, while functional con-
nectivity studies have reported specific abnormalities in 

psychotic populations13 that do not necessarily overlap 
with abnormalities reported here in converters, we note 
that those findings apply to older populations while the 
CHR group studied here was young and still maturing. 
In summary, these novel data indicate that CT reductions 
contribute to volumetric reductions assessed in a large 
MRI study sample of CHR drawn from an Asian popu-
lation. Our data indicate for the first time that CT reduc-
tions span a set of brain regions that largely overlap with 
the fronto-parietal network whose abnormalities charac-
terize older populations with established, mixed psychi-
atric diagnosis.12,13,68 These data support our hypothesis 
of a set of cortical abnormalities common to all CHRs, 
and of a second set of abnormalities that are character-
istic of converters to psychosis relative to non-converters 
and to HC.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin online.
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